Instruction Manual
Quantitative Determination of Pancreatic Elastase 1
Stool Test

ScheBo® • Elastase 1 Pancréatique

Réf./Cat.-No. : 07
Pour Diagnostic in Vitro
For in vitro diagnostic use only

Test protégé par des brevets internationaux
(Octobre 2010)
1 Introduction .. 7
1.1 Physiopathologie ... 7
1.2 Avantages .. 7
1.3 Sensibilité et spécificité ... 8
1.4 Principe du dosage ... 9
1.5 Limite de détection .. 9
1.6 Fidélité ... 9
1.7 Interférences .. 10
2 Réactifs ... 10
3 Echantillons et stabilité des échantillons ... 11
4 Conservation et stabilité de la trousse .. 11
5 Matériel supplémentaire requis ... 11
6 Précautions... 12
7 Conseils pour une performance optimale du dosage 12
7.1 Personnel à contacter .. 13
8 Technique de dosage .. 13
8.1 Préparation ... 13
8.1.1 Préparation du tampon de lavage/-dilution de l’échantillon 13
8.1.2 Préparation de la plaque ELISA ... 13
8.1.3 Préparation de l’échantillon fécal .. 14
8.1.3.1 Exécution avec l’E1 Quick-Prep™... 14
8.1.3.2 Exécution par la méthode de pesée .. 16
8.2. Procédure de dosage .. 17
8.2.1 Incubation des échantillons et étalons ... 17
8.2.2 Incubation du complexe d’anti-E1-bio et POD-streptavidine 18
8.2.3 Réaction colorée ... 19
8.2.4 Arrêt de la réaction colorée .. 19
8.2.5 Mesure .. 19
8.3 Evaluation des résultats .. 19
8.3.1 Evaluation manuelle ... 19
8.3.2 Evaluation avec logiciel - ELISA ... 20
8.3.3 Concentrations de référence pour l’élastase 1 pancréatique 20
9 Bibliographie .. 34
10 Résumé du dosage pour l’utilisateur expérimenté revers

E1 Quick-Prep™ est une marque déposée de ScheBo® · Biotech AG, Allemagne
Table of Contents

At A Glance ... 6
1 Introduction ... 21
 1.1 Pathobiocchemistry ... 21
 1.2 Advantages ... 21
 1.3 Sensitivity and specificity .. 22
 1.4 Basic principle of the assay .. 23
 1.5 Detection limit .. 23
 1.6 Precision ... 23
 1.7 Interferences ... 23
2 Reagents ... 24
3 Sample material and sample stability .. 24
4 Storage and stability of the test kit ... 25
5 Additional utensils required .. 25
6 Precautions .. 25
7 Recommendations for optimal test performance .. 25
 7.1 Contact persons .. 26
8 Test procedure ... 27
 8.1 Preparation .. 27
 8.1.1 Preparation of sample-/washing buffer ... 27
 8.1.2 Preparation of ELISA plate ... 27
 8.1.3 Preparation of stool specimen ... 27
 8.1.3.1 Using the E1 Quick-Prep™ sample preparation system 27
 Diagram of stool extraction with the E1 Quick-Prep™ 28
 8.1.3.2 Using the weighing method ... 29
 8.2 Assay procedure ... 30
 8.2.1 Incubation of samples and standards .. 30
 8.2.2 Incubation with complex of anti-E1-bio and POD-Streptavidin 31
 8.2.3 Color reaction ... 32
 8.2.4 Stopping the color reaction ... 32
 8.2.5 Measurement ... 32
 8.3 Quantification of results .. 32
 8.3.1 Manual evaluation ... 32
 8.3.2 Evaluation by ELISA - software ... 33
 8.3.3 Reference concentrations for pancreatic elastase 1 33
9 References ... 34
10 Short Protocol .. Back Page

Quick-Prep™ is a registered trademark of ScheBo®• Biotech AG, Germany
Trousse ScheBo® • Pancreatic Elastase 1 Stool

Indications principales :
- Diagnostic/Exclusion de l’insuffisance pancréatique exocrine provoquée par exemple par pancréatite chronique, fibrose kystique (mucoviscidose), diabète sucré, lithiase biliaire (calculs biliaires), cancer du pancréas, sténose papillaire, « trouble de la croissance »
- Étude du suivi des patients atteints d’insuffisance pancréatique légère à modérée
- Diagnostic/Exclusion de l’implication pancréatique dans la douleur abdominale, les symptômes gastro-intestinaux, l’ostéoporose.

Principaux Avantages :
- La thérapie de substitution enzymatique n’a pas d’influence sur les résultats du test.
- La grande stabilité de l’élastase 1 pancréatique permet l’expédition des échantillons.
- La méthode possède une grande spécificité et sensibilité:
 - Spécificité: 93 % Sensibilité: 93 %
- L’élastase 1 pancréatique est stable tout au long du transit intestinal et elle est entièrement spécifique du pancréas.
- La variation intra-individuelle de la concentration d’élastase 1 pancréatique est faible.

Méthode de détection :
- ELISA sandwich avec deux anticorps monoclonaux hautement spécifiques de l’élastase 1 pancréatique humaine.
- La trousse ELISA contient une plaque de dosage (96 puits) avec 12 barrettes sécables de 8 puits chacune pour le dosage de jusqu’à 42 échantillons en doublets.

Concentration de référence :
- Pour adultes et enfants de plus d’un mois
- Valeurs >200 μg élastase/g fèces indiquent une fonction pancréatique exocrine normale.
- Valeurs < 200 μg élastase/g fèces indiquent une insuffisance pancréatique
Echantillons :
- Echantillon fédal (environ 100 mg) ou suc duodénal
- Les échantillons sont stables pour l’expédition et peuvent être conservés dans le laboratoire jusqu’à 3 jours à 4° - 8° C ou jusqu’à 1 an à -20° C.
- Les extraits fécaux non dilués sont stables pendant 1 jour à 4° - 8° C ou jusqu’à 1 an à -20° C.
ScheBo® • Pancreatic Elastase 1 Stool Test

Main Indications:
- Diagnosis/exclusion of exocrine pancreatic insufficiency caused by e.g. Chronic Pancreatitis, Cystic Fibrosis, Diabetes Mellitus, Cholelithiasis (Gallstones), “Failure to Thrive”, Pancreatic Cancer, Papillary Stenosis
- Follow-up monitoring of patients with mild or moderate pancreatic insufficiency
- Diagnosis/exclusion of pancreatic involvement in association with gastrointestinal symptoms, abdominal pain, osteoporosis

Main Advantages:
- Digestive enzyme substitution therapy has no influence on the result of the test
- High stability allows time for convenient mailing of samples
- High specificity and sensitivity: Specificity: 93%, Sensitivity: 93%
- Pancreatic elastase 1 is stable during intestinal transit and absolutely pancreas-specific.
- Intra-individual variation of pancreatic elastase 1 concentration is low.

Method of Detection:
- Sandwich ELISA with two monoclonal antibodies highly specific for human pancreatic elastase 1
- The ELISA kit is based on a microtiter plate (96 well format) with 12 breakable single strips x 8 wells suitable for up to 42 samples in duplicate

Reference Concentration:
For adults and children after the first month of life
- Values > 200 µg elastase/g stool indicate normal exocrine pancreatic function
- Values < 200 µg elastase/g stool indicate exocrine pancreatic insufficiency

Sample Material:
- Single random stool sample (about 100 mg) or duodenal juice
- Samples are stable for convenient mailing and may be stored in the laboratory up to 3 days at 4° - 8° C or for up to 1 year at -20°C.
- Undiluted stool extracts are stable for 1 day at 4° - 8° C or for up to 1 year at -20°C.
1 Introduction

ScheBo® • Pancreatic Elastase 1 Stool Test pour la détermination quantitative des taux fécaux d’élastase 1 pancréatique par des professionnels de la santé.

1.1 Physiopathologie

L’élastase 1 (E1) pancréatique humaine est stable tout au long du transit intestinal. Par conséquent, sa concentration dans les fèces reflète la fonction exocrine du pancréas. Pendant la phase aiguë de l’inflammation pancréatique, l’E1 est libérée dans le sang. Ainsi, la détermination quantitative de l’élastase 1 pancréatique dans le sérum permet le diagnostic ou l’exclusion de la pancréatite aiguë.

1.2 Avantages

Le test Schebo® • Pancreatic Elastase 1 Stool, fiable et rentable, est la nouvelle méthode de référence, non invasive, pour la détermination de la fonction pancréatique. Contrairement aux autres paramètres de laboratoire pour le diagnostic de la maladie pancréatique (amylase et lipase sériques pour le diagnostic de la pancréatite aiguë et chymotrypsine fécale pour le diagnostic de l’insuffisance pancréatique exocrine), la détermination de l’élastase 1 pancréatique possède les avantages suivants:

- L’E1 est entièrement spécifique du pancréas.
- Puisque l’E1 est stable tout au long du transit intestinal, la concentration fécale d’élastase 1 reflète le pouvoir de sécrétion du pancréas (diagnostic ou exclusion d’insuffisance exocrine pancréatique).
- L’E1 montre une bonne corrélation avec les tests invasifs de stimulation pancréatique par sécrétilne-pancréozyminine et sécrétilne-caéroléine (tests de référence).
- La variation intra-individuelle de la concentration de l’E1 fécale est faible.
- Un traitement substitutif n’a aucune influence sur la détermination de l’E1. Les anticorps monoclonaux utilisés n’ont pas de réaction croisée avec les élastases d’origine animale contenues dans les préparations enzymatiques de substitution.
• Tout comme les autres enzymes pancréatiques, l’E1 est libérée dans le sang pendant la phase aiguë de l’inflammation. En raison de sa demi-vie plus longue que celle de l’amylase et de la lipase, sa concentration reste élevée plus longtemps. Ceci permet encore un dépistage de la pancréatite aiguë 3 à 4 jours après le début de la maladie.

Deux trousses ELISA (basées sur des anticorps monoclonaux) sont disponibles pour la détermination de l’élastase 1 pancréatique. Le test sérique mesure l’E1 dans le sérum et permet le diagnostic ou l’exclusion d’une pancréatite aiguë ou d’un épisode inflammatoire de pancréatite chronique ou pancréatite induite par une ERCP ou par des calculs biliaires. Le test fécal mesure l’E1 dans les fèces (ou le suc duodénal) et permet le diagnostic ou l’exclusion d’insuffisance pancréatique exocrine, qui peut être provoquée par pancréatite chronique, fibrose kystique (mucoviscidose), tumeur pancréatique, lithiase biliaire ou diabète sucré, par exemple.

E1 test sérique: Réf.-No. : 06 E1 test fécal: Réf.-No. : 07

1.3 Sensibilité et spécificité

L’efficacité diagnostique du dosage de l’élastase 1 pancréatique fécale a été évaluée dans plusieurs études cliniques. Löser et al. (1996) signalent 93% de sensibilité et 93% de spécificité pour le diagnostic de l’insuffisance pancréatique exocrine.

Stein et al. (1996), Löser et al. (1996) ainsi que Katschinski et al. (1997) ont démontré une bonne corrélation entre le test E1 et les méthodes invasives (c.-à-d. le test sécrétine-pancréozyzmine et le test sécrétine-caeruléine).

Dans les études comparatives, le ScheBo® • Pancreatic Elastase 1 Stool Test a montré qu’il était plus sensible que le test de chymotrypsine fécale, en particulier dans l’insuffisance pancréatique légère à modérée (Walkowiak et al. (2002), Löser et al. (1995 & 1996), Katschinski et al. (1997), Glasbrenner et al. (1996), Gullo et al. (1999)).

Dominguez-Muñoz et al. (1995) et Glasbrenner et al. (1996) ont montré que la détermination d’E1 est plus spécifique que le test pancréolauryl (PLT) avec une sensibilité comparable. L’E1 a montré aussi une meilleure corrélation avec la
réponse clinique à l’enzyme pancréatique de thérapie de remplacement que le PLT (Elphick & Kapur (2005)).

De plus, des études avec l’E1 ont montré une excellente sensibilité et spécificité pour le diagnostic de la mucoviscidose avec insuffisance pancréatique (Beharry et al. (2002), Cade et al. (2000), Walkowiak et al. (1999 & 2002), Phillips et al. (1999), Terbrack et al. (1996), Soldan et al. (1996), Gullo et al. (1997), Wallis et al. (1997)).

1.4 Principe du dosage

La plaque ELISA est constituée de puits revêtus d’un anticorps monoclonal anti-élastase 1 pancréatique humaine (E1). À la suite d’une première incubation, l’E1 des échantillons et des étalons se lie à l’anticorps fixé sur la paroi des puits. Un complexe formé par l’anticorps monoclonal anti-élastase 1 biotinylé et la peroxydase (POD)-streptavidine se lie à l’E1 pendant l’incubation suivante. La peroxydase oxyde l’ABTS [acide 2, 2’-Azino-bis-(3-éthylbenzothiazolin-6-sulfonique) sel diammonium] du substrat qui devient vert foncé. L’intensité de la coloration, proportionnelle à la concentration d’E1, est mesurée à l’aide d’un photomètre.

1.5 Limite de détection

L’élastase pancréatique 1 a été déterminée dans l’intervalle de 15 à 500 μg/g d’E1/g de fèces. Les concentrations inférieures à l’étalon le plus bas doivent être reportées comme < 15 μg E1/g fèces. Les valeurs supérieures à l’étalon le plus haut doivent être reportées comme > 500 μg E1/g fèces.

1.6 Fidélité

La variabilité intra-essai (répétabilité) a été évaluée en dosant 20 fois, 6 prélèvements fécaux (32-405 μg E1/g fèces). Le coefficient de variation (CV) moyen a été de 5,8 % (intervalle : 4,0-8,5 %) La variabilité inter-essais (reproductibilité) a été calculée par le dosage de 7 prélèvements fécaux sur dix jours différents. Le coefficient de variation (CV) moyen a été de 7,6 % (intervalle: 4,8-10,6 %).
1.7 Interférences
En raison de la dilution de la concentration d’E1 dans les selles très liquides, les valeurs peuvent être diminuées dans ces échantillons. Par conséquent, il est recommandé de信号aler la consistance de selles liquides et de demander un prélèvement d’échantillon normal, en cas d’une valeur pathologique (< 200 μg E1/g fèces).
Il n’existe pas d’autres facteurs connus interférant avec le dosage. En particulier, la thérapie enzymatique de substitution n’a pas d’influence sur le dosage de l’élastase 1.

2 Réactifs

1. **12 barrettes ELISA sécables** avec 8 puits chacune revêtus d’un anticorps monoclonal anti élastase 1 pancréatique humaine (E1), 96 puits.
2. **Tampon de lavage/-dilution** de l’échantillon concentré (5x) (bouchon noir), 100 ml Tampon phosphaté, pH 7.2, avec détergents
3. **Etalons E1 1 à 4**, prêts à l’emploi (bouchon bleu), 700 μl chacun élastase 1 pancréatique humaine en solution aqueuse avec azide de sodium
4. **Contrôle 1**, prêt à l’emploi (bouchon violet), 700 μl élastase 1 pancréatique humaine en solution aqueuse avec azide de sodium
5. **Contrôle 2**, prêt à l’emploi (bouchon vert), 700 μl élastase 1 pancréatique humaine en solution aqueuse avec azide de sodium
6. **Complexe d’anticorps monoclonal anti-E1 conjugué à la biotine et POD-streptavidine** (= anti-E1-bio-POD-Streptavidin-Comp.), prêt à l’emploi, sensible à la lumière (flacon plastique noir, bouchon noir) 8 ml en solution aqueuse avec conservateur
7. **Solution de substrat**, prête à l’emploi, sensible à la lumière (bouchon rouge), 12 ml ABTS (2,2’-Azino-bis(acide 3-éthylbenzothiazolin-6-sulfonique)) en solution aqueuse
8. **Solution d’arrêt**, prête à l’emploi (bouchon blanc), 12 ml Solution aqueuse alcaline
3 Echantillons et stabilité des échantillons

Echantillons : Un simple échantillon fécal (une quantité de la taille d’un pois est suffisante – environ 100 mg)

Stabilité des échantillons : Les échantillons peuvent être conservés dans le laboratoire jusqu’à trois jours à 4 - 8 °C ou jusqu’à un an à -20 °C. Les extraits fécaux dilués peuvent être conservés à 4 - 8 °C pendant une journée ou jusqu’à un an à -20 °C.
La trousse ScheBo® • Pancreatic Elastase 1 stool convient aussi pour déterminer la concentration d’E1 dans le suc duodénal.
Les performances n’ont pas été établies pour d’autres types d’échantillons

4 Conservation et stabilité de la trousse

Tous les composants de cette trousse sont stables à 4-8°C jusqu’à la date de péremption indiquée sur les étiquettes. La trousse ne doit pas être utilisée après la date de péremption. Les barrettes ELISA et/o les puits non utilisés doivent être conservés dans le sachet refermable contenant un dessicateur. S’assurer que le sachet est complètement fermé.

5 Matériel supplémentaire requis

- tubes en polystyrène à usage unique (5 ml, 10 ml et 12 ml) avec bouchons
- éprouvette graduée 500 ml
- mélangeur vortex
- pipettes de précision réglables 0-50 μl, 50-200 μl, et 200-1000 μl
- pipettes de 5 ml et 10 ml
- pipette à 8 canaux réglable 50-250 μl
- lecteur ELISA capable de lire l’absorbance à 405 nm
6 Précautions

Pour diagnostic in vitro. Le tampon d’extraction, les étalons, le contrôle et le complexe d’anti-E1-bio et POD-streptavidine contiennent un conservateur. **Respecter les règles de sécurité. Eviter le contact avec la peau.** Ne pas effectuer de pipetage avec la bouche. Porter des gants jetables pendant la réalisation des dosages. Une feuille des données de sécurité est disponible sur demande. **Ne pas mélanger des réactifs provenant de lots différents.**

7 Conseils pour une performance optimale du dosage

1. Respecter strictement la notice d’emploi.
2. Tous les composants de la trousse doivent être conservés à 4 - 8°C. Porter tous les réactifs, y compris la plaque ELISA, à température ambiante juste avant l’utilisation. Conserver tous les réactifs, immédiatement après utilisation, à 4 - 8°C.
4. Ne pas toucher le fond de la plaque ELISA.
5. Distribuer dans les puits de la plaque ELISA dans le même ordre et avec des intervalles réguliers.
6. Afin d’éviter des contaminations, n’utiliser que des embouts et de réservoirs de pipettes propres. Ne pas utiliser le même réservoir pour différents réactifs (ex. solution de substrat et d’arrêt).
7. Pipetage
 • Pipeter tous les réactifs et les échantillons dans le tiers inférieur du puits.
 • Pour le lavage, maintenir l’embout de pipette dans le bord supérieur des puits.
8. Lavage
 • Avant chaque étape de lavage, retourner la plaque et **taper fermement** sur une serviette propre en papier pour **éliminer tout liquide résiduel**.
 • N’utiliser que du papier absorbant propre pour essuyer le liquide.
• Veiller à ce que le liquide ne coule pas.
• **Incuber** avec du tampon de lavage pendant **au moins 1-2 minutes** pour chaque période de lavage.

9. Mesure

• Agiter délicatement la plaque avant chaque mesure pour obtenir une distribution homogène de la coloration.
• **Eliminer les bulles d’air** avec une aiguille propre.
• Après l’ajout de la solution d’arrêt, attendre au moins cinq minutes avant de mesurer.

7.1 Personnel à contacter

ScheBo® Biotech AG
Netanyastr. 3, 35394 Giessen, Allemagne
Tel: 0049-(0)641-4996-0, Fax: 0049-(0)641-4996-77
http://www.schebo.com, e-mail: schebo@schebo.com

• votre distributeur local

8 Technique de dosage

8.1 Préparation

8.1.1 Préparation du tampon de lavage/-dilution de l’échantillon
100 ml de tampon de lavage/-dilution de l’échantillon x5 (bouchon noir) + 400 ml d’eau bidistillée. Le tampon de lavage/-dilution de l’échantillon dilué est stable pendant 6 mois à 4 - 8 °C.

8.1.2 Préparation de la plaque ELISA
Porter la plaque ELISA à température ambiante avant ouverture. Déchirer le sachet refermable au niveau de l’encoche, l’ouvrir et prélever le nombre nécessaire de barrettes sècables. Les barrettes ELISA et/o les puits non utilisés doivent être conservés dans le sachet refermable contenant un dessicateur. S’assurer que le sachet est complètement fermé.
8.1.3 Préparation de l'échantillon fécal

- Le dispositif doseur E1 Quick-Prep™ peut être utilisé: Pour une plus grande facilité et rapidité, il est conseillé d’utiliser le dispositif doseur E1 Quick-Prep™ (réf. 07-Quick, voir 8.1.3.1) ou bien
- Méthode de pesée : l’échantillon de selles peut être pesé (voir 8.1.3.1)

8.1.3.1 Réalisation avec l’E1 Quick-Prep™

Le tampon d’extraction prêt à l’emploi est déjà inclus dans les tubes du système E1 Quick-Prep™! Voir sur la boîte la date de péremption.

Préparation des échantillons de selles

Le ScheBo® • E1 Quick-Prep™ (réf. 07-Quick) doit être utilisé comme indiqué dans la figure 1 (page 15).

Dilution des extraits fécaux (1/70)

Préparation de la dilution 1/70 :
10 μl échantillon extrait + 700 μl tampon de lavage/-dilution de l’échantillon
Extraction des selles avec El Quick-Prep™

1. Tourner l'embout du doseur jaune (uniquement) dans le sens contraire aux aiguilles d'une montre

2. Retirer l'embout jaune en tirant vers le haut

3. Insérer l'embout jaune dans l'échantillon de selles à une profondeur de 1 cm (l'espace entre les traits doit être rempli de selles)

4. Retirer l'embout jaune du doseur

5. Insérer l'embout jaune dans le tube à travers le cône bleu et tourner l'embout jaune dans le sens des aiguilles d'une montre

6. Bien mélanger (vortex)

7. Extraire pendant 10 minutes

8. Bien mélanger de nouveau

9. Tourner le cône bleu dans le sens contraire aux aiguilles d'une montre, puis pousser ou soulever jusqu'à un click d'ouverture

10. Retirer le cône bleu et l'embout jaune (ensemble) du tube

11. Après stabilisation des particules, diluer l'échantillon de selles extrait au 1/70 (10 μl d'extrait de selles + 700 μl de diluant-tampon de lavage x1)

Compléter le test comme indiqué dans la notice d'utilisation (voir section 8.2, p. 17)
8.1.3.2 Exécution avec la méthode de pesée

Tampon d’extraction concentré (5x) Pour échantillons fécaux (flacon carré, bouchon vert), 100 ml (réf.-no. 02) Tampon phosphaté, pH 7,2, avec détergents et azide de sodium

Préparation du tampon d’extraction :
100 ml de tampon d’extraction x5 (réf.-no. 02) + 400 ml d’eau bidistillée. Le tampon d’extraction dilué est stable pendant 6 mois à 4 - 8 °C.

Pesée des échantillons fécaux
Faire la tare du tube et de la tige en plastique sur une balance digitale sensible. Prélever une petite quantité (environ 100 mg) de l’échantillon fécal avec la boucle de la tige et remettre la tige dans le tube pour peser l’échantillon. Un cure-dents ou un applicateur en bois peut être utilisé à la place de la tige.
Ajouter le volume du tampon d’extraction en fonction du poids de l’échantillon, (ex. 100 mg fèces + 10 ml tampon d’extraction ou 75 mg fèces + 7,5 ml tampon d’extraction). La concentration finale doit être 10 mg fèces/ml tampon d’extraction.

Homogénéisation et extraction des échantillons fécaux
Bien mélanger la suspension à l’aide d’un agitateur (utiliser un agitateur vortex), à température ambiante. Les fèces doivent être bien homogénéisées pour assurer une extraction complète d’élastase pancréatique 1. Après une période d’extraction d’au moins cinq minutes, mélanger encore une fois. Les dilutions sont réalisées une fois que les particules sont déposées. Comme l’élastase 1 pancréatique est très stable, la période d’extraction peut être prolongée jusqu’à 24h à 4 - 8 °C et les dilutions peuvent être réalisées le lendemain.

Dilution des extraits fécaux (1/250)
Préparation de la dilution 1/250:
10 μl échantillon extrait + 2,5 ml tampon de lavage/-dilution de l’échantillon
8.2 Procédure de dosage

8.2.1 Incubation des échantillons et étales

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Etal1 Etal1</td>
<td>E4</td>
<td>E4</td>
<td>E12</td>
<td>E12</td>
<td>E20</td>
<td>E20</td>
<td>E28</td>
<td>E28</td>
<td>E36</td>
<td>E36</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Etal3 Etal3</td>
<td>E6</td>
<td>E6</td>
<td>E14</td>
<td>E14</td>
<td>E22</td>
<td>E22</td>
<td>E30</td>
<td>E30</td>
<td>E38</td>
<td>E38</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Etal4 Etal4</td>
<td>E7</td>
<td>E7</td>
<td>E15</td>
<td>E15</td>
<td>E23</td>
<td>E23</td>
<td>E31</td>
<td>E31</td>
<td>E39</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>C C</td>
<td>E8</td>
<td>E8</td>
<td>E16</td>
<td>E16</td>
<td>E24</td>
<td>E24</td>
<td>E32</td>
<td>E32</td>
<td>E40</td>
<td>E40</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>E1</td>
<td>E1</td>
<td>E9</td>
<td>E9</td>
<td>E17</td>
<td>E17</td>
<td>E25</td>
<td>E25</td>
<td>E33</td>
<td>E33</td>
<td>E41</td>
<td>E41</td>
</tr>
<tr>
<td>H</td>
<td>E2</td>
<td>E2</td>
<td>E10</td>
<td>E10</td>
<td>E18</td>
<td>E18</td>
<td>E26</td>
<td>E26</td>
<td>E34</td>
<td>E34</td>
<td>E42</td>
<td>E42</td>
</tr>
</tbody>
</table>

Figure 2: Schéma proposé

Etal: étales
C: contrôle
E1-E42: échantillons

Blanc = puits A1 et A2; déposer 50 μl de tampon de lavage/-dilution de l’échantillon dans chaque puits.

Etalons (bouchon bleu) prêts à l’emploi; déposer 50 μl de chaque étalon (non dilué) dans les puits des colonnes 1 et 2 en doublets.

<table>
<thead>
<tr>
<th>Fèces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etalon 1 correspond à 15 μg/g</td>
</tr>
<tr>
<td>Etalon 2 correspond à 50 μg/g</td>
</tr>
<tr>
<td>Etalon 3 correspond à 150 μg/g</td>
</tr>
<tr>
<td>Etalon 4 correspond à 500 μg/g</td>
</tr>
</tbody>
</table>

Contrôle 1 (bouchon violet), prêt à l’emploi; déposer 50 μl dans les puits F1 et F2. Le contrôle 1 doit être déterminé dans chaque série.

Contrôle 2. prêt à l’emploi (bouchon vert).
Le contrôle 2 doit être utilisé lorsqu’il est demandé par la législation ou la réglementation locale ou nationale et/ou les organismes d’accréditation. Distribuer 50 μl dans les puits G1 et G2 (à la place d’un échantillon)
Fèces

Contrôle 1 correspond à 200 μg/g ± 15 %

Contrôle 2 – la concentration est imprimée sur l’étiquette du flacon

Déposer 50 μl d’extrait fécal dilué (voir 8.1.3.1 et 8.1.3.2) de chaque échantillon dans chacun des deux puits adjacents. Le contrôle peut aussi être utilisé comme contrôle interne.

Incuber pendant 30 minutes à température ambiante.

Lavage : Vider les puits et laver chaque puits 3 fois avec le tampon de lavage/-dilution de l’échantillon (pipettes multicanaux à 8 voies, 250 μl/puits). Retourner la plaque et taper fermement sur du papier absorbant propre pour éliminer complètement tout liquide résiduel.

8.2.2 Incubation du complexe d’anti-E1-bio et POD-streptavidine

Ajouter 50 μl/puits du complexe d’anti-E1-bio et POD-streptavidine = anti-E1-bio-POD-Streptavidin-Comp. prêt à l’emploi (flacon plastique noir avec bouchon noir).

Incuber pendant 15 minutes à température ambiante et à l’abri de la lumière.

Lavage : Vider les puits et laver chaque puits 3 fois avec le tampon de lavage/-dilution de l’échantillon (pipettes multicanaux à 8 voies, 250 μl/puits). Retourner la plaque et taper fermement sur du papier absorbant propre pour éliminer complètement tout liquide résiduel.
8.2.3 **Réaction colorée**
Déposer 100 μl de solution de substrat prête à l’emploi (bouchon rouge) dans chaque puits.

Incuber pendant 15 minutes à température ambiante et à l’abri de la lumière.

(Il peut s’avérer nécessaire de raccourcir ce temps si on utilise un lecteur de plaques ELISA ou un lecteur automatique qui ne lit les absorbances que jusqu’à 2.5 ou 3.)

8.2.4 **Arrêt de la réaction colorée**
Arrêter la réaction avec le substrat en ajoutant 100 μl de solution d’arrêt par puits (prête à l’emploi, bouchon blanc). Mélanger le contenu des puits en agitant la plaque.

8.2.5 **Mesure**
Lire la densité optique à 405 nm avec un lecteur de microplaques entre 5 et 30 minutes après ajout de la solution d’arrêt. Mélanger le contenu des puits avant la lecture. Une longueur d’onde de 492 nm peut être utilisée comme référence.

8.3 **Évaluation des résultats**
8.3.1 **Évaluation manuelle**
Calculer la valeur moyenne des densités optiques de tous les doublets après avoir soustrait la valeur moyenne du blanc.
Tracer la courbe d’étalonnage en plaçant la valeur de concentration des échantillons versus la densité optique correspondante sur un papier bilogarithmique.
La concentration des échantillons peut être lue directement à l’aide de la courbe d’étalonnage, puisque le facteur de dilution a été pris en compte pour le calcul des étalons.
Figure 3: Exemple d’une courbe d’étalonnage type

Exemple: La densité optique moyenne après soustraction du blanc est 0,65. Cette densité optique correspond à une concentration de 120 µg E1/g fèces (voir courbe d’étalonnage).

8.3.2 Evaluation avec logiciel - ELISA

Disposer le blanc, les étalons et les échantillons selon le schéma de la plaque (figure 2). Utiliser une méthode de régression linéaire à échelle bilogarithmique.

8.3.3 Concentrations de référence pour l’élastase 1 pancréatique

Dans les fèces :

- normale : 200 à > 500 µg E1/g fèces
- insuffisance pancréatique exocrine modérée à légère : 100 – 200 µg E1/g fèces
- insuffisance pancréatique exocrine : < 100 µg E1/g fèces

Ces concentrations d’élastase 1 pancréatique correspondent à des échantillons fécaux de consistance normale. Dans les cas de concentrations pathologiques d’élastase 1 (< 200 µg E1/g fèces) dans des échantillons de selles liquides, il serait nécessaire d’obtenir un second échantillon de fèces normales (voir chapitre 1.7).
1 Introduction

ScheBo® • Pancreatic Elastase 1 Stool Test for the quantitative determination of fecal levels of pancreatic elastase 1 by healthcare professionals.

1.1 Pathobiochemistry

Human pancreatic elastase 1 (E1) remains undegraded during intestinal transit. Therefore its concentration in feces reflects exocrine pancreatic function. During an inflammation of the pancreas, E1 is released into the bloodstream. Thus the quantification of pancreatic elastase 1 in serum allows diagnosis or exclusion of acute pancreatitis.

1.2 Advantages

The reliable and cost-effective ScheBo® • Pancreatic Elastase 1 Stool Test is the new gold standard for non-invasive pancreatic function testing. In contrast to other laboratory parameters for the diagnosis of pancreatic disease (amylase and lipase activity in serum for the diagnosis of acute pancreatitis and fecal chymotrypsin activity for the diagnosis of exocrine pancreatic insufficiency), the determination of pancreatic elastase 1 has the following advantages:

- E1 is absolutely pancreas-specific.
- Since E1 is stable during intestinal transit, the fecal elastase 1 concentration reflects the secretory capacity of the pancreas (diagnosis or exclusion of pancreatic exocrine insufficiency).
- E1 determination correlates with the gold standard invasive secretin-pancreozymin test and the secretin-caerulein test.
- Intra-individual variation of fecal E1 concentration is low.
- Enzyme substitution therapy has no influence on the determination of E1. The monoclonal antibodies used in the test do not cross-react with elastases of animal origin, which are contained in enzyme substitution preparations.
- Like other pancreatic enzymes, E1 is released into the bloodstream during pancreatic inflammation. Due to its longer half-life, compared to amylase and lipase, its concentration remains elevated longer, and an acute
Pancreatic Elastase 1 in Stool

Pancreatitis is detectable even three or four days after onset of the disease.

Two ELISA test kits (based on monoclonal antibodies) are available for the determination of pancreatic elastase 1. The serum test quantifies E1 in serum, allowing the diagnosis or exclusion of an acute pancreatitis or an inflammatory episode of chronic pancreatitis or ERCP- or gallstone-induced pancreatitis. The stool test quantifies E1 in feces (or duodenal juice), allowing the diagnosis or exclusion of pancreatic exocrine insufficiency, which can be caused by chronic pancreatitis, cystic fibrosis, diabetes mellitus, cholelithiasis (gallstones), “failure to thrive”, pancreatic cancer or papillary stenosis, for example.

E1 serum test: cat. no.: 06
E1 stool test: cat. no.: 07

1.3 Sensitivity and specificity

The diagnostic efficiency of pancreatic elastase 1 determination in stool has been evaluated in many clinical studies. Löser et al. (1996) reported 93% sensitivity and 93% specificity for the diagnosis of exocrine pancreatic insufficiency.

Stein et al. (1996), Löser et al. (1996) and Katschinski et al. (1997) have demonstrated a good correlation between E1 and invasive intubation tests (i.e. the secretin-pancreozymin test and the secretin-caerulein test). In comparative studies, the ScheBo® • Pancreatic Elastase 1 Stool Test has been shown to be more sensitive than the fecal chymotrypsin test, especially in mild to moderate disease (Walkowiak et al. (2002), Löser et al. (1995 & 1996), Katschinski et al. (1997), Glasbrenner et al. (1996), Gullo et al. (1999)). Dominguez-Muñoz et al. (1995) and Glasbrenner et al. (1996) showed that E1 determination is more specific than the pancreolauryl test (PLT) at a comparable sensitivity. E1 has also demonstrated a better correlation with clinical response to pancreatic enzyme replacement therapy than PLT (Elphick & Kapur (2005)).

In addition, studies with E1 have shown an excellent sensitivity and specificity for the diagnosis of cystic fibrosis with pancreatic involvement (Beharry et al. (2002), Cade et al. (2000), Walkowiak et al. (1999 & 2002), Phillips et al. (1999),
1.4 Basic principle of the assay
The ELISA plate is coated with a monoclonal antibody which only recognizes human pancreatic elastase 1 (E1). E1 from samples and standards binds to the antibody and is immobilized on the plate. A complex of monoclonal anti-Elastase 1-Biotin and Peroxidase (POD)-Streptavidin binds to E1 during the next incubation. The peroxidase oxidizes ABTS (2, 2'-Azino-bis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt), which turns dark green. Finally, the concentration of oxidized ABTS is determined photometrically.

1.5 Detection limit
Pancreatic elastase 1 is determined within the range of 15 to 500 μg E1/g stool. Concentrations below the lowest standard should be stated as < 15 μg E1/g stool. Values above the highest standard should be indicated as > 500 μg E1/g stool.

1.6 Precision
The intra-assay variance was evaluated by 20-fold determination of six stool samples (32-405 μg E1/g stool). The average coefficient of variance (CV) was 5.8% (range: 4.0-8.5 %).
The inter-assay variance was calculated with seven stools, which were tested on ten different days. The mean CV was 7.6 % (range: 4.8 - 10.6 %).

1.7 Interferences
Due to dilution the E1 concentration may be lowered in very watery stool samples. Therefore it is recommended to note the consistency of watery stools. In case of a pathological result (< 200 μg E1/g stool) a formed stool sample should be requested.
There are no other factors known which interfere with the test. In particular, enzyme substitution therapy does not influence the determination of elastase 1.
2 Reagents

1. **12 breakable ELISA-strips** with 8 wells each coated with a monoclonal antibody to human pancreatic Elastase 1 (E1), 96 wells
2. **Sample-/ washing buffer concentrate** (5x) (black cap), 100 ml phosphate buffered saline, pH 7.2, with detergent
3. **E1 standards 1 to 4, ready-to-use** (blue cap), 700 µl each human pancreatic elastase 1 in aqueous solution with sodium azide
4. **Control 1, ready-to-use** (violet cap), 700 µl human pancreatic elastase 1 in aqueous solution with sodium azide
5. **Control 2, ready-to-use** (green cap), 700 µl human pancreatic elastase 1 in aqueous solution with sodium azide
6. **Complex of monoclonal anti-E1-biotin and POD-Streptavidin** (= anti-E1-bio-POD-Streptavidin-Comp.), ready-to-use, light sensitive (black plastic vial with black cap), 8 ml in aqueous solution with preservative
7. **Substrate solution, ready-to-use, light sensitive** (red cap), 12 ml ABTS in aqueous solution
8. **Stop solution, ready-to-use** (white cap), 12 ml alkaline aqueous solution

3 Sample material and sample stability

Sample material: A single random formed stool sample (a pea-sized amount is sufficient – circa 100 mg).

Sample stability: Samples are stable for convenient mailing and may then be stored in the laboratory for up to three days at 4 - 8 °C or up to one year at -20 °C. Undiluted stool extracts may be stored at 4 - 8 °C for one day or up to one year at -20 °C.

The ScheBo® • Pancreatic Elastase 1 stool test is also suitable to determine the concentration of E1 in duodenal juice (please contact us for further information). Performance characteristics have not been established for other types of samples.
4 Storage and stability of the test kit

All components of the test kit are stable at 4 - 8 °C until the expiry date shown on the kit labels. The kit must not be used after the expiry date. Unused ELISA-strips and/or wells must be stored in the re-sealable foil bag containing the desiccant, making sure the seal is completely closed.

5 Additional utensils required

- Polystyrene test tubes (5 ml, 10 ml and 12 ml) with caps
- 500 ml graduated cylinder
- Vortex mixer
- Adjustable precision pipettes: 0-50 μl, 50-200 μl, and 200-1000 μl
- 5 ml and 10 ml pipettes
- Adjustable 8 channel pipette 50-250 μl
- ELISA reader capable of reading absorbance at 405 nm.

6 Precautions

For in vitro diagnostic use only. Extraction buffer, standards, control and the complex of anti-E1-bio and POD-Streptavidin contain a preservative. Please observe the safety regulations. Avoid skin contact. Do not pipette by mouth. Wear disposable gloves while performing the tests. A materials safety data sheet is available on request. Do not mix materials from different master lots.

7 Recommendations for optimal test performance

1. Follow the instruction manual precisely.
2. All components of the test kit have to be stored at 4 - 8 °C. Bring all reagents including the ELISA plate to room temperature shortly before use. After using store all reagents at 4 - 8 °C immediately.
3. Vortex all liquid reagents before use. Avoid droplets in the caps of the tubes.
4. Do not touch the bottom of the ELISA plate.
5. Always work up the ELISA plate in identical order and equal time intervals.
To avoid contamination use clean pipette tips and clean receptacles. Do not use the same receptacle for different reagents (e.g. substrate and stop solution).

7. Pipetting

- Pipette all reagents and samples into the lower third of a well
- For washing hold the pipette tips at the upper rim of the wells

8. Washing

- Before each washing step, invert the plate and tap hard on a clean paper towel to remove any remaining liquid.
- Use only clean paper towels for draining off liquid.
- Make sure that no liquid drains back.
- Incubate with washing buffer at least 1-2 minutes per washing step.

9. Measurement

- Agitate plate well before each measurement to ensure even distribution of the dye.
- Remove any bubbles with a clean needle.
- Wait at least five minutes after adding the stop solution before measuring.

7.1 Contact persons

Dr. Karin Decker
ScheBo® Biotech AG
Netanyastr. 3, 35394 Giessen, Germany
Tel: +49-(0)641-4996-0, Fax: +49-(0)641-4996-77
http://www.schebo.de, e-mail: schebo@schebo.com

- your local distributor
8 Test procedure

8.1 Preparation

8.1.1 Preparation of sample-/washing buffer
100 ml sample-/washing buffer 5x (black cap) + 400 ml bidistilled water.
The diluted sample-/washing buffer is stable for 6 months at 4 - 8 °C.

8.1.2 Preparation of ELISA plate
Bring ELISA plate to room temperature before opening. Tear open the
resealable foil bag where indicated by the notch, open the re-sealable closure
and remove desired number of breakable ELISA strips. Unused ELISA strips
and/or wells must be stored in the resealable foil bag containing the
desiccant, making sure the seal is completely closed.

8.1.3 Preparation of stool specimen
- We recommend the E1 Quick-Prep™ dosing device (cat. no. 07-Quick, see
 8.1.3.1) is used for speed and convenience, or alternatively
- Weighing method: stool specimen can be weighed (see 8.1.3.2)

8.1.3.1 Using the E1 Quick-Prep™ sample preparation system
The tubes of the ScheBo® • E1 Quick-Prep™ sample preparation system
contain ready-to-use extraction buffer. See the imprint on the packaging for
the expiry date.

Preparation of stool specimens
The ScheBo® • E1 Quick-Prep™ (cat. no. 07-Quick) should be used according
to figure 1 (page 28).

Dilution of stool extracts (1:70)
Preparation of 1:70 dilution:
10 μl extracted stool sample + 700 μl sample-/washing buffer
Stool extraction with E1 Quick-Prep™

1. Turn the yellow dosing tip (only) anti-clockwise
2. Remove the yellow dosing tip by pulling it upwards
3. Insert the yellow dosing tip in stool sample to a depth of c. 1 cm (all notches must be filled with stool)
4. Remove the yellow dosing tip
5. Insert the yellow dosing tip into the tube through the blue cone and turn the yellow dosing tip clockwise
6. Mix well (vortex)
7. Extract for 10 minutes
8. Then mix again
9. Twist the blue cone anti-clockwise, then push or lift upwards until it clicks open
10. Remove the blue cone and yellow dosing tip (together) from the tube
11. After the particles have settled, dilute the stool sample extract 1:70 (10 μl stool sample extract + 700 μl sample-/washing buffer 1x)

Complete the test as described in the instruction manual (see section 8.2, page 30)

Figure 1
8.1.3.2 Performance with the weighing method

Extraction buffer concentrate (5x) for stool specimen (square flask, green cap), 100 ml (cat. no.: 02) phosphate buffered saline, pH 7.2, with detergent and sodium azide

Preparation of extraction buffer
Dilute the extraction buffer (5x) (cat. no.: 02): 100 ml extraction buffer 5x + 400 ml bidistilled water. The diluted extraction buffer is stable for 6 months at 4 - 8 °C.

Weighing the stool specimen
Tare tube and inoculating loop on a sensitive digital laboratory balance. Take a small sample (approximately 100 mg) from the stool specimen with the inoculating loop and replace the loop into the tube to weigh the sample. A wooden applicator or toothpick may be used instead of the inoculating loop.
Add extraction buffer to the stool sample according to the mass of the sample, (e.g. 100 mg stool + 10 ml extraction buffer or 75 mg stool + 7.5 ml extraction buffer). The final concentration must be 10 mg stool/ml extraction buffer.

Homogenisation and extraction of stool samples
Vortex the stool suspension thoroughly at room temperature. Stool suspensions must be homogenized to ensure a complete extraction of pancreatic elastase 1. After an extraction period of at least five minutes, vortex the suspension again. Then, after any particles have settled, dilute the stool extracts. Because pancreatic elastase 1 is very stable, the extraction period may be extended for up to 24h at 4 - 8 °C and the dilutions can be performed the next day.

Dilution of stool extracts (1:250)
Preparation of 1:250 dilution:
10 μl extracted stool sample + 2.5 ml sample-/washing buffer.
8.2 Assay procedure

8.2.1 Incubation of samples and standards

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>Blank</td>
<td>S3</td>
<td>S3</td>
<td>S11</td>
<td>S11</td>
<td>S19</td>
<td>S19</td>
<td>S27</td>
<td>S27</td>
<td>S35</td>
<td>S35</td>
</tr>
<tr>
<td>B</td>
<td>STD1</td>
<td>STD1</td>
<td>S4</td>
<td>S4</td>
<td>S12</td>
<td>S12</td>
<td>S20</td>
<td>S20</td>
<td>S28</td>
<td>S28</td>
<td>S36</td>
<td>S36</td>
</tr>
<tr>
<td>C</td>
<td>STD2</td>
<td>STD2</td>
<td>S5</td>
<td>S5</td>
<td>S13</td>
<td>S13</td>
<td>S21</td>
<td>S21</td>
<td>S29</td>
<td>S29</td>
<td>S37</td>
<td>S37</td>
</tr>
<tr>
<td>D</td>
<td>STD3</td>
<td>STD3</td>
<td>S6</td>
<td>S6</td>
<td>S14</td>
<td>S14</td>
<td>S22</td>
<td>S22</td>
<td>S30</td>
<td>S30</td>
<td>S38</td>
<td>S38</td>
</tr>
<tr>
<td>E</td>
<td>STD4</td>
<td>STD4</td>
<td>S7</td>
<td>S7</td>
<td>S15</td>
<td>S15</td>
<td>S23</td>
<td>S23</td>
<td>S31</td>
<td>S31</td>
<td>S39</td>
<td>S39</td>
</tr>
<tr>
<td>F</td>
<td>CON</td>
<td>CON</td>
<td>S8</td>
<td>S8</td>
<td>S16</td>
<td>S16</td>
<td>S24</td>
<td>S24</td>
<td>S32</td>
<td>S32</td>
<td>S40</td>
<td>S40</td>
</tr>
<tr>
<td>G</td>
<td>S1</td>
<td>S1</td>
<td>S9</td>
<td>S9</td>
<td>S17</td>
<td>S17</td>
<td>S25</td>
<td>S25</td>
<td>S33</td>
<td>S33</td>
<td>S41</td>
<td>S41</td>
</tr>
<tr>
<td>H</td>
<td>S2</td>
<td>S2</td>
<td>S10</td>
<td>S10</td>
<td>S18</td>
<td>S18</td>
<td>S26</td>
<td>S26</td>
<td>S34</td>
<td>S34</td>
<td>S42</td>
<td>S42</td>
</tr>
</tbody>
</table>

Figure 2: Possible plate layout

STD: standards
CON: control
S1-S42: samples

Blank = wells A1 and A2; pipette 50 µl of sample-/washing buffer into each well.

Standards (blue cap) are ready-to-use; pipette 50 µl of each standard (undiluted) into columns 1 and 2 as duplicate.

 Stool
 Standard 1 corresponds to 15 µg/g
 Standard 2 corresponds to 50 µg/g
 Standard 3 corresponds to 150 µg/g
 Standard 4 corresponds to 500 µg/g

Control 1, ready-to-use (violet cap); pipette 50 µl into wells F1 and F2. Control 1 must be determined on each run.
Control 2, ready-to-use (green cap).
Control 2 may be used if required by local, state or national regulations/guidelines or accrediting organisations.
Pipette 50 µl into wells G1 and G2 (instead of a sample).

Stool
Control 1 corresponds to 200 µg/g ± 15 %
Control 2 - see label for concentration

Pipette 50 µl of extracted diluted stool specimen (see 8.1.3.1 und 8.1.3.2) from each sample into each of two adjacent wells. The control can also be used as an internal control.

Incubate for 30 minutes at room temperature.

Washing: Empty the wells and wash each well 3 times with sample-/washing buffer (8 channel pipette, 250 µl/well). Invert the plate and tap it hard on a clean paper towel to completely remove any remaining liquid.

8.2.2 Incubation with complex of anti-E1-bio and POD-Streptavidin
Add 50 µl/well ready-to-use complex of anti-E1-biotin and POD-Streptavidin = anti-E1-bio-POD-Streptavidin-Comp. (black plastic vial with black cap)

Incubate for 15 minutes in the dark at room temperature.

Washing: Empty the wells and wash each well 3 times with sample-/washing buffer (8 channel pipette, 250 µl/well). Invert the plate and tap it hard on a clean paper towel to completely remove any remaining liquid.
8.2.3 **Color Reaction**

Add 100 μl of ready-to-use substrate solution (red cap) to each well.

Incubate for 15 minutes in the dark at room temperature.
(You may need to shorten this time when using an ELISA plate-reader or a fully automated machine which reads absorbances up to only 2.5 or 3.)

8.2.4 **Stopping the color reaction**

Stop the substrate reaction by adding 100 μl of stop solution per well (ready-to-use, white cap). Mix contents well by agitating the plate.

8.2.5 **Measurement**

Read the optical density at 405 nm with a microtiter plate reader **between 5 and 30 minutes** after addition of the stop solution. Mix contents well before measuring. 492 nm can be used as a reference wavelength.

8.3 **Quantification of results**

8.3.1 **Manual evaluation**

Calculate the mean optical densities of all duplicates after mean blank value has been subtracted. Plot the concentration of standards versus their corresponding optical densities on a log-log paper = standard curve.
Figure 3: Typical example of a standard curve

Example: The average optical density after the mean blank value has been subtracted was 0.65. This optical density corresponds to a concentration of 120 μg E1/g stool (see standard curve).

8.3.2 Evaluation by ELISA - software

Define blank, standards and samples according to the plate layout (figure 2). Use the curve-fit method (linear regression) with log-log scale.

8.3.3 Reference concentrations for pancreatic elastase 1

In stool:

- normal: 200 to >500 μg E1/g stool
- moderate to mild exocrine pancreatic insufficiency: 100 – 200 μg E1/g stool
- severe exocrine pancreatic insufficiency: <100 μg E1/g stool

These pancreatic elastase 1 concentrations refer to formed stool samples. In case of pathological elastase 1 concentrations (< 200 μg E1/g stool) in watery stool samples a second formed stool sample should be requested (see section 1.7).
Pancreatic Elastase 1 in Stool

9 Literatur - References

Pancreatic Elastase 1 in Stool

Hardt, P.D., Marzeion, A.M., Schnell-Kretschmer, H., Wüsten, O., Nalop, J.,
Zekorn, T., Klör, H.U. (2002) Fecal elastase 1 measurement compared with
endoscopic retrograde cholangiopancreatography for the diagnosis of
chronic pancreatitis, Pancreas 25: e6-e9

bei Kindern und Jugendlichen mit Diabetes mellitus Typ I, Abstract/ 5.
Ärztewoche Gastroenterologie/Viszeralchirurgie in Garmisch-Partenkirchen,
21.-26.02.1999

I diabetes mellitus, Z Gastroenterol 39: 823-830

Secretion and Fecal Excretion of Pancreatic Elastase-1 in Healthy Humans
and Patients with Chronic Pancreatitis, Pancreas 15:2: 191-200

Leeds, J. S., Hopper, A. D., Hurlstone, D. P., Edwards, S. J., McAlindon, M. E.,
pancreatic insufficiency in adult coeliac disease a cause of persisting
symptoms? Aliment Pharmacol Ther 25, 265-271

Leus, J., Van Biervliet, St., Robberecht, E. (2000) Detection and Follow up of
Exocrine Pancreatic Insufficiency in Cystic Fibrosis: A Review,
Eur J Pediatr 159: 563-568

Comparative Clinical Evaluation of the 13C-Mixed Triglyceride Breath Test
as an Indirect Pancreatic Function Test, Scand J Gastroenterol 33:
327-334

Löser C., Fölsch U. R. (1996) Diagnostik der chronischen Pankreatitis,
Dtsch med Wschr 121: 243-247

sensitive, and specific pancreatic function test, Gut 39, 580-586

elastase 1 in inflammatory pancreatic and gastrointestinal diseases and in
renal insufficiency - A comparison with other serum pancreatic enzymes, Int
J Pancreat 2: 159 - 170
Schappi, M.G., Smith, V.V., Cubitt, D., Milla, P.J., Lindley K.J. (2002) Faecal Elastase 1 Concentration is a Marker of Duodenal Enteropathy, Arch Dis Child 86(1):50-53

Résumé du dosage pour l’utilisateur expérimenté

Important: Le résumé du protocole ne remplace pas le protocole détaillé inclus dans cette notice d’emploi!

ScheBo® • Pancreatic Elastase 1 Stool Test for the quantitative determination of fecal levels of pancreatic elastase 1 by healthcare professionals.

- Préparer le tampon de lavage/-dilution pour échantillons et le tampon d’extraction
- Extraire et homogénéiser les fèces - Diluer l’extrait de fèces dans le tampon de lavage/-diluant pour échantillons
- Distribuer 50μl de blanc, étalons, contrôle et échantillons en doublets dans les barrettes ELISA - Incuber pendant 30 minutes à température ambiante - Laver
- Distribuer 50μl - complexe anti-E1-bio et POD-streptavidine (prête à l’emploi) - Incuber 15 minutes à température ambiante (obscurité) - Laver
- Distribuer 100μl de solution de substrat (prête à l’emploi) - Incuber 15 minutes à température ambiante (obscurité)
- Ajouter 100μl de solution d’arrêt (prête à l’emploi)
- Lire la plaque à DO405 ou DO405 - DO492
- Calculer sur une courbe d’étalonnage à échelle bilogarithmique

Short protocol for the experienced user

Important: The short protocol is not a substitute for the detailed protocol given in this leaflet!

ScheBo® • Pancreatic Elastase 1 Stool Test for the quantitative determination of fecal levels of pancreatic elastase 1 by healthcare professionals.

- Prepare the sample-/washing buffer and the extraction buffer
- Extract and homogenize stool - Dilute stool extract in sample-/washing buffer
- Pipette 50 μl blank, standards, control and samples in duplicate in the ELISA-strips - Incubate 30 minutes at room temperature - Wash
- 50 μl anti-E1-bio and POD-Streptavidin-Complex (ready-to-use) - Incubate 15 minutes at room temperature (in the dark) - Wash
- 100 μl substrate solution (ready-to-use) - Incubate 15 minutes at room temperature (in the dark)
- Add 100 μl stop solution (ready-to-use)
- Read plate at OD405 or OD405 - OD492
- Evaluate with standard curve using a log-log scale

© 2010 by ScheBo • Biotech AG • Netanyastr. 3 • 35394 Giessen (Germany)
Phone +49-(0)641-49 96-0 • Fax +49-(0)641 – 49 96-77 • www.schebo.com